Intelligent Contracts
Tools
Advanced Features
Adding Custom LLM Providers

Adding LLM Provider Plugins

This section is intended for advanced users who wish to integrate new LLM provider plugins. This process requires code modifications, and we encourage you to create a Pull Request if you'd like your plugin to be included in the official GenLayer Studio.

The GenLayer Studio seamlessly interacts with multiple LLM providers. Currently, we support the following providers out of the box:

In addition to these built-in providers, you have the flexibility to integrate your own custom providers.

Adding a New LLM Provider Plugin

Creating the Plugin

To integrate a new LLM provider plugin, you need to implement the Plugin protocol defined in the llms.py (opens in a new tab) file. The protocol is structured as follows:

class Plugin(Protocol):
    def __init__(self, plugin_config: dict): ...
 
    async def call(
        self,
        node_config: dict,
        prompt: str,
        regex: Optional[str],
        return_streaming_channel: Optional[asyncio.Queue],
    ) -> str: ...
 
    def is_available(self) -> bool: ...
 
    def is_model_available(self, model: str) -> bool: ...

Here's an example of how you might implement a custom Plugin. Note that this are just some common guidelines, you are free to implement your integration as you please

class MyCustomPlugin:
    def __init__(self, plugin_config: dict):
        self.api_key = plugin_config.get('api_key')
        self.base_url = plugin_config.get('base_url', 'https://api.customllm.com')
        # Add any other necessary configuration parameters
 
    async def call(
        self,
        node_config: dict,
        prompt: str,
        regex: Optional[str],
        return_streaming_channel: Optional[asyncio.Queue],
    ) -> str:
        # Implement the API call to your custom LLM provider
        # This is a placeholder implementation
        async with aiohttp.ClientSession() as session:
            async with session.post(
                f"{self.base_url}/generate",
                json={"prompt": prompt, "config": node_config},
                headers={"Authorization": f"Bearer {self.api_key}"}
            ) as response:
                if response.status == 200:
                    result = await response.json()
                    return result['generated_text']
                else:
                    raise Exception(f"API call failed with status {response.status}")
 
    def is_available(self) -> bool:
        # Check if the plugin is properly configured and available
        return bool(self.api_key) and bool(self.base_url)
 
    def is_model_available(self, model: str) -> bool:
        # Check if the specified model is available for this provider
        # This is a placeholder implementation
        available_models = ['custom-gpt-3', 'custom-gpt-4']
        return model in available_models

Registering the Plugin

After implementing the Plugin protocol, you need to register your new provider in the llms.py file under the get_llm_provider function. This step ensures that the GenLayer Studio recognizes and can utilize your custom plugin.

def get_llm_plugin(plugin: str, plugin_config: dict) -> Plugin:
"""
Function to register new providers
"""
plugin_map = {
"ollama": OllamaPlugin,
"openai": OpenAIPlugin,
"anthropic": AnthropicPlugin,
"custom-plugin-key": MyCustomPlugin, # Modify here accordingly
}
 
    if plugin not in plugin_map:
        raise ValueError(f"Plugin {plugin} not registered.")
 
    return plugin_map[plugin](plugin_config)
 

Updating the JSON Schema

To maintain consistency and enable proper configuration validation, you must update the JSON schema (opens in a new tab) in the providers_schema.json (opens in a new tab) file. This update should include your new provider and its specific configuration options.

The JSON schema plays a crucial role in validating the configuration options for each provider, ensuring that users input correct and compatible settings.

Registering a Provider for the new plugin

New LLM Providers can be registered through the Studio's UI in the Settings page or manually through the backend API. Here is an example on how addition of an LLM Provider using your new Plugin could look like

curl --request POST \
  --url http://localhost:4000/api \
  --header 'Content-Type: application/json' \
  --data '{
	"jsonrpc": "2.0",
	"method": "sim_addProvider",
	"params": [
		{
			"provider": "my-custom-provider",
			"model": "my-custom-model",
			"config": {},
			"plugin": "custom-plugin-key",
			"plugin_config": {
				"api_key": "MY-SECRET-KEY",
				"base_url": "my.custom.url"
			}
		}
	],
	"id": 1
}'